3.175 \(\int \frac {x^2 (a+b \text {sech}^{-1}(c x))}{(d+e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=246 \[ \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}-\frac {b x \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {d+e x^2}}+\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {\frac {e x^2}{d}+1} F\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{3 c d e \sqrt {d+e x^2}}-\frac {b c \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {d+e x^2} E\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{3 d e \left (c^2 d+e\right ) \sqrt {\frac {e x^2}{d}+1}} \]

[Out]

1/3*x^3*(a+b*arcsech(c*x))/d/(e*x^2+d)^(3/2)-1/3*b*x*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)/d/(c^2
*d+e)/(e*x^2+d)^(1/2)-1/3*b*c*EllipticE(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(e*x^2+d)^(1/2)/
d/e/(c^2*d+e)/(1+e*x^2/d)^(1/2)+1/3*b*EllipticF(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(1+e*x^2
/d)^(1/2)/c/d/e/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 246, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {264, 6301, 12, 471, 423, 426, 424, 421, 419} \[ \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}-\frac {b x \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {1-c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {d+e x^2}}+\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {\frac {e x^2}{d}+1} F\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{3 c d e \sqrt {d+e x^2}}-\frac {b c \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {d+e x^2} E\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{3 d e \left (c^2 d+e\right ) \sqrt {\frac {e x^2}{d}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSech[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

-(b*x*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2])/(3*d*(c^2*d + e)*Sqrt[d + e*x^2]) + (x^3*(a + b*Ar
cSech[c*x]))/(3*d*(d + e*x^2)^(3/2)) - (b*c*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[d + e*x^2]*EllipticE[ArcSi
n[c*x], -(e/(c^2*d))])/(3*d*e*(c^2*d + e)*Sqrt[1 + (e*x^2)/d]) + (b*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1
+ (e*x^2)/d]*EllipticF[ArcSin[c*x], -(e/(c^2*d))])/(3*c*d*e*Sqrt[d + e*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 423

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 6301

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSech[c*x], u, x] + Dist[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)],
 Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] &&
 ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ
[m + 2*p + 3, 0])) || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx &=\frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {x^2}{3 d \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx\\ &=\frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx}{3 d}\\ &=-\frac {b x \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {d+e x^2}}+\frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\sqrt {1-c^2 x^2}}{\sqrt {d+e x^2}} \, dx}{3 d \left (c^2 d+e\right )}\\ &=-\frac {b x \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {d+e x^2}}+\frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \sqrt {d+e x^2}} \, dx}{3 d e}-\frac {\left (b c^2 \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\sqrt {d+e x^2}}{\sqrt {1-c^2 x^2}} \, dx}{3 d e \left (c^2 d+e\right )}\\ &=-\frac {b x \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {d+e x^2}}+\frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}-\frac {\left (b c^2 \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {d+e x^2}\right ) \int \frac {\sqrt {1+\frac {e x^2}{d}}}{\sqrt {1-c^2 x^2}} \, dx}{3 d e \left (c^2 d+e\right ) \sqrt {1+\frac {e x^2}{d}}}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \sqrt {1+\frac {e x^2}{d}}} \, dx}{3 d e \sqrt {d+e x^2}}\\ &=-\frac {b x \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2}}{3 d \left (c^2 d+e\right ) \sqrt {d+e x^2}}+\frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}-\frac {b c \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {d+e x^2} E\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{3 d e \left (c^2 d+e\right ) \sqrt {1+\frac {e x^2}{d}}}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1+\frac {e x^2}{d}} F\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{3 c d e \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 2.66, size = 488, normalized size = 1.98 \[ \frac {a x^3-\frac {b \sqrt {\frac {1-c x}{c x+1}} \left (d+e x^2\right ) (e x-c d)}{e \left (c^2 d+e\right )}+\frac {b \sqrt {\frac {1-c x}{c x+1}} (c x+1) \left (d+e x^2\right ) \sqrt {\frac {c \left (\sqrt {d}+i \sqrt {e} x\right )}{(c x+1) \left (c \sqrt {d}+i \sqrt {e}\right )}} \sqrt {\frac {c \left (\sqrt {e} x+i \sqrt {d}\right )}{(c x+1) \left (\sqrt {e}+i c \sqrt {d}\right )}} \left (\left (\sqrt {e}+i c \sqrt {d}\right ) E\left (i \sinh ^{-1}\left (\sqrt {\frac {\left (d c^2+e\right ) (1-c x)}{\left (\sqrt {d} c+i \sqrt {e}\right )^2 (c x+1)}}\right )|\frac {\left (\sqrt {d} c+i \sqrt {e}\right )^2}{\left (c \sqrt {d}-i \sqrt {e}\right )^2}\right )-2 \sqrt {e} F\left (i \sinh ^{-1}\left (\sqrt {\frac {\left (d c^2+e\right ) (1-c x)}{\left (\sqrt {d} c+i \sqrt {e}\right )^2 (c x+1)}}\right )|\frac {\left (\sqrt {d} c+i \sqrt {e}\right )^2}{\left (c \sqrt {d}-i \sqrt {e}\right )^2}\right )\right )}{c e \left (c \sqrt {d}+i \sqrt {e}\right ) \sqrt {\frac {(c x-1) \left (\sqrt {e}+i c \sqrt {d}\right )}{(c x+1) \left (\sqrt {e}-i c \sqrt {d}\right )}}}+b x^3 \text {sech}^{-1}(c x)}{3 d \left (d+e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*ArcSech[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

(a*x^3 - (b*Sqrt[(1 - c*x)/(1 + c*x)]*(-(c*d) + e*x)*(d + e*x^2))/(e*(c^2*d + e)) + b*x^3*ArcSech[c*x] + (b*Sq
rt[(1 - c*x)/(1 + c*x)]*(1 + c*x)*Sqrt[(c*(Sqrt[d] + I*Sqrt[e]*x))/((c*Sqrt[d] + I*Sqrt[e])*(1 + c*x))]*Sqrt[(
c*(I*Sqrt[d] + Sqrt[e]*x))/((I*c*Sqrt[d] + Sqrt[e])*(1 + c*x))]*(d + e*x^2)*((I*c*Sqrt[d] + Sqrt[e])*EllipticE
[I*ArcSinh[Sqrt[((c^2*d + e)*(1 - c*x))/((c*Sqrt[d] + I*Sqrt[e])^2*(1 + c*x))]], (c*Sqrt[d] + I*Sqrt[e])^2/(c*
Sqrt[d] - I*Sqrt[e])^2] - 2*Sqrt[e]*EllipticF[I*ArcSinh[Sqrt[((c^2*d + e)*(1 - c*x))/((c*Sqrt[d] + I*Sqrt[e])^
2*(1 + c*x))]], (c*Sqrt[d] + I*Sqrt[e])^2/(c*Sqrt[d] - I*Sqrt[e])^2]))/(c*(c*Sqrt[d] + I*Sqrt[e])*e*Sqrt[((I*c
*Sqrt[d] + Sqrt[e])*(-1 + c*x))/(((-I)*c*Sqrt[d] + Sqrt[e])*(1 + c*x))]))/(3*d*(d + e*x^2)^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.72, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b x^{2} \operatorname {arsech}\left (c x\right ) + a x^{2}\right )} \sqrt {e x^{2} + d}}{e^{3} x^{6} + 3 \, d e^{2} x^{4} + 3 \, d^{2} e x^{2} + d^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsech(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral((b*x^2*arcsech(c*x) + a*x^2)*sqrt(e*x^2 + d)/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{2}}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsech(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsech(c*x) + a)*x^2/(e*x^2 + d)^(5/2), x)

________________________________________________________________________________________

maple [F]  time = 3.60, size = 0, normalized size = 0.00 \[ \int \frac {x^{2} \left (a +b \,\mathrm {arcsech}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsech(c*x))/(e*x^2+d)^(5/2),x)

[Out]

int(x^2*(a+b*arcsech(c*x))/(e*x^2+d)^(5/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{3} \, a {\left (\frac {x}{{\left (e x^{2} + d\right )}^{\frac {3}{2}} e} - \frac {x}{\sqrt {e x^{2} + d} d e}\right )} + b \int \frac {x^{2} \log \left (\sqrt {\frac {1}{c x} + 1} \sqrt {\frac {1}{c x} - 1} + \frac {1}{c x}\right )}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsech(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

-1/3*a*(x/((e*x^2 + d)^(3/2)*e) - x/(sqrt(e*x^2 + d)*d*e)) + b*integrate(x^2*log(sqrt(1/(c*x) + 1)*sqrt(1/(c*x
) - 1) + 1/(c*x))/(e*x^2 + d)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^2\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*acosh(1/(c*x))))/(d + e*x^2)^(5/2),x)

[Out]

int((x^2*(a + b*acosh(1/(c*x))))/(d + e*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asech(c*x))/(e*x**2+d)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________